
Umi Public Report

PROJECT: Umi Review
Fall 2021

Prepared For:
Umi Protocol
up@umi.top

Prepared By:

Jonathan Haas | Bramah Systems, LLC.

jonathan@bramah.systems

Umi Review

Table of Contents

Executive Summary 3
Scope of Engagement 3
Engagement Goals 3
Protocol Specification 3
Overall Assessment 3
Timeliness of Content 5

General Recommendations 6

Toolset Warnings 6
Overview 6
Compilation Warnings 6
Test Coverage 6
Static Analysis Coverage 6

Directory Structure 7

2

Umi Review

Umi Security Review

Executive Summary

Scope of Engagement
Bramah Systems, LLC was engaged in Fall of 2021 to perform a comprehensive security
review of the Umi Protocol Golang repository. Our review was conducted over a period of five
business days by a member of Bramah Systems, LLC. executive staff.

Bramah’s review pertains to Go code (*.go) as of commit
4d7f004b930454182b73a578d9d45edaebf11929.

Engagement Goals
The primary scope of the engagement was to evaluate and establish the overall security of the
Umi Protocol system, with a specific focus on trading actions. Notably, this report does not
describe usability or any operational aspects of the system in any way. In specific, the
engagement sought to answer the following questions (determined conclusions in bold):

● Is it possible for an attacker to manipulate the code?
○ There does not appear to be a methodology via which an attacker would be

able to manipulate the running executable without prior local privileged
access.

● Does the Go code match the specification as provided?
○ Code appears to match the provided specification.

● Is there a way to interfere with the software mechanisms?
○ It does not appear there is a mechanism to interfere with the software

mechanisms.
● Are the arithmetic calculations trustworthy?

○ Calculations appear to match the provided specification.

Protocol Specification
A basic specification document was compiled by the review team based upon review of the
Umi Protocol code and discussion with the team.

3

Umi Review

Overall Assessment
Bramah Systems was engaged to evaluate and identify multiple security concerns in the
codebase of the Umi architecture. During the course of our engagement, Bramah Systems
denoted no instances wherein the software deviated from established best practices and
procedures of secure software development. The codebase benefits from detailed code
comments throughout, which allowed for Bramah to review the codebase rapidly and without

a deeper formal specification.

4

Umi Review

Disclaimer
As of the date of publication, the information provided in this report reflects the presently held,
commercially reasonable understanding of Bramah Systems, LLC.’s knowledge of security
patterns as they relate to the Umi Protocol Protocol, with the understanding that distributed
ledger technologies (“DLT”) remain under frequent and continual development, and resultantly
carry with them unknown technical risks and flaws. The scope of the review provided herein is
limited solely to items denoted within “Scope of Engagement” and contained within “Directory
Structure”. The report does NOT cover, review, or opine upon security considerations unique to
the Go compiler, tools used in the development of the protocol, or distributed ledger
technologies themselves, or to any other matters not specifically covered in this report.
The contents of this report must NOT be construed as investment advice or advice of any other
kind. This report does NOT have any bearing upon the potential economics of the Umi Protocol
protocol or any other relevant product, service or asset of Umi Protocol or otherwise. This
report is not and should not be relied upon by Umi Protocol or any reader of this report as any
form of financial, tax, legal, regulatory, or other advice.
To the full extent permissible by applicable law, Bramah Systems, LLC. disclaims all
warranties, express or implied. The information in this report is provided “as is” without
warranty, representation, or guarantee of any kind, including the accuracy of the information
provided. Bramah Systems, LLC. makes no warranties, representations, or guarantees about
the Umi Protocol Protocol. Use of this report and/or any of the information provided herein is
at the users sole risk, and Bramah Systems, LLC. hereby disclaims, and each user of this report
hereby waives, releases, and holds Bramah Systems, LLC. harmless from, any and all liability,
damage, expense, or harm (actual, threatened, or claimed) from such use.

Timeliness of Content
All content within this report is presented only as of the date published or indicated, to the
commercially reasonable knowledge of Bramah Systems, LLC. as of such date, and may be
superseded by subsequent events or for other reasons. The content contained within this
report is subject to change without notice. Bramah Systems, LLC. does not guarantee or
warrant the accuracy or timeliness of any of the content contained within this report, whether
accessed through digital means or otherwise.
Bramah Systems, LLC. is not responsible for setting individual browser cache settings nor can it
ensure any parties beyond those individuals directly listed within this report are receiving the
most recent content as reasonably understood by Bramah Systems, LLC. as of the date this
report is provided to such individuals.

5

Umi Review

General Recommendations
Best Practices & Go Development Guidelines

The Umi codebase was not found to have any vulnerabilities of note by Bramah Systems nor
the Umi team. Areas of suggested improvement were incorporated into prior code updates.

Toolset Warnings
Unique to the Umi Protocol Protocol

Overview
In addition to our manual review, our process involves utilizing concolic analysis and dynamic
testing in order to perform additional verification of the presence security vulnerabilities. An
additional part of this review phase consists of reviewing any automated unit testing
frameworks that exist.
The following sections detail warnings generated by the automated tools and confirmation of
false positives where applicable, in addition to findings generated through manual inspection.

Compilation Warnings
No warnings were found at time of compilation that presented material concern.

Test Coverage
The contract repository possesses substantial unit test coverage throughout. This testing
provides a variety of unit tests which encompass the various operational stages of the protocol

Static Analysis Coverage
The contract repository underwent heavy scrutiny with multiple static analysis agents,
including:

● Semgrep

In each case, the team had either mitigated relevant concerns raised by each of these tools or
provided adequate justification for the risk.

6

https://github.com/returntocorp/semgrep

Umi Review

Directory Structure
At time of review, the directory structure of the Umi Protocol appeared as it does below. Our
review, at request of Umi Protocol, covers the Go code (*.sol) as of commit
4d7f004b930454182b73a578d9d45edaebf11929.

├── LICENSE

├── README.md

├── build

│ └── package

│ └── docker

│ └── Dockerfile

├── cmd

│ └── umid

│ └── main.go

├── go.mod

├── go.sum

└── pkg

├── config

│ └── config.go

├── events

│ └── events.go

├── generator

│ └── generator.go

├── ledger

│ ├── account.go

│ ├── confirmer.go

│ ├── confirmer_legacy.go

│ ├── ledger.go

│ └── structure.go

7

Umi Review
├── legacy

│ ├── client.go

│ ├── fetcher.go

│ └── pusher.go

├── openlibm

│ ├── pow.go

│ └── pow_test.go

├── restapi

│ ├── handler

│ │ ├── account.go

│ │ ├── address_create.go

│ │ ├── block.go

│ │ ├── event.go

│ │ ├── helpers.go

│ │ ├── helpers_test.go

│ │ ├── mempool.go

│ │ ├── structure.go

│ │ ├── transaction.go

│ │ └── transaction_create.go

│ ├── restapi.go

│ ├── router.go

│ └── router_test.go

├── storage

│ ├── blockchain.go

│ ├── blockchain_memory.go

│ ├── blockchain_mmap.go

│ ├── blockchain_test.go

│ ├── filesystem.go

│ ├── filesystem_test.go

│ ├── genesis.go

│ ├── index.go

8

Umi Review
│ ├── mempool.go

│ └── mempool_test.go

├── syncer

│ └── syncer.go

└── umi

├── account.go

├── address.go

├── bech32.go

├── block.go

├── block_legacy.go

├── crypto.go

├── hash.go

├── merkle.go

├── prefix.go

├── transaction.go

└── transaction_verify.go

17 directories, 54 files

9

